The function below show any null, NaN, or empty values in the dataframe. It takes a dataframe as a parameter and returns a dataframe with columns that shows the count and percentage of any null, NaNs, and empty values.
def missing_values_col(df): """ Write or use a previously written function to return the total missing values and the percent missing values by column. """ null_count = df.isnull().sum() null_percentage = (null_count / df.shape[0]) * 100 empty_count = pd.Series(((df == ' ') | (df == '')).sum()) empty_percentage = (empty_count / df.shape[0]) * 100 nan_count = pd.Series(((df == 'nan') | (df == 'NaN')).sum()) nan_percentage = (nan_count / df.shape[0]) * 100 return pd.DataFrame({'num_missing': null_count, 'missing_percentage': null_percentage, 'num_empty': empty_count, 'empty_percentage': empty_percentage, 'nan_count': nan_count, 'nan_percentage': nan_percentage})